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A new simpli"ed approach to modelling cracks in beams undergoing transverse vibration
is presented. The modelling approach uses Euler}Bernoulli beam elements with small
modi"cations to the local #exibility in the vicinity of cracks. This crack model is then used to
estimate the crack locations and sizes, by minimizing the di!erence between the measured
and predicted natural frequencies via model updating. The uniqueness of the approach is
that the simpli"ed crack model allows the location and damage extent to be estimated
directly. The simpli"ed crack model may also be used to generate training data for pattern
recognition approaches to health monitoring. The proposed method has been illustrated
using the experimental data on beam examples.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Health monitoring of mechanical structures using experimentally measured modal data has
been a topic of active research for decades. Most of the approaches use the modal data of
a structure before damage occurs as baseline data, and all subsequent tests are compared to
it. Any deviation in the modal properties from this baseline data is used to estimate the
crack size and location. Doebling et al. [1] gave a review of the research on crack and
damage detection and location in structures using vibration data. The estimation of crack
size and location generally requires a mathematical model (usually a "nite element
(FE) model) along with experimental modal parameters of the structure. The estimation
methods are predominately based on the change in natural frequencies [2}6], the change
in mode shapes [7}12] or measured dynamic #exibility [13}15]. Salawu [16] gave a
review of research work on crack detection based on the change in natural frequencies.
Another class of crack detection methods, also based on the change in modal parameters,
uses a di!erent identi"cation approach based on the modi"cation of structural
model matrices (such as mass, sti!ness and damping matrices) using FE model updating
methods [1].
A number of gradient-based FE model updating methods have been discussed by

Friswell and Mottershead [17]. Many studies using these methods for structural health
monitoring have been reported (for example, references [18}20]). In this paper, the
proposed method for the detection of crack size and location uses the gradient-based FE
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14 J. K. SINHA E¹ A¸.
model updating approach, although the application is somewhat di!erent in the present
study. Most of the earlier studies identi"ed changes in element sti!nesses, or the system
sti!ness matrices. These methods only approximate the crack size and location to an
element, and hence a very "ne FE mesh is required to avoid large errors. The explicit use of
the location of a crack as an updating parameter is used in this paper in order to reduce this
computational burden and improve the localization accuracy. Sinha and Friswell [21] used
a similar concept to estimate support locations and sti!nesses.
Measured natural frequencies of the structure are used to estimate the crack size and

location. Problems arise in many structures if natural frequencies alone are used, since the
symmetry of the structure means that the damage location is often non-unique. Using
mode shape data enables a unique solution to be obtained, although natural frequencies are
relatively insensitive to damage. This paper demonstrates the use of the simpli"ed crack
model using natural frequency data alone, although the model may also be used with
algorithms requiring mode shape, frequency or time data. A sensitivity-based FE model
updating technique [17] is used based on a correlated FE model. The method detects
a crack by simultaneously updating the position and size of the crack in the FE model
through the minimization of the di!erence between the measured and computed natural
frequencies. This cost function is a highly non-linear function with respect to the updating
parameters, and an iterative solution is obtained. Such an approach requires the
formulation and computation of the sensitivity matrix ("rst order derivatives) of the cost
function with respect to the updating parameters. The shape functions of the beam are used
to generate the system sti!ness matrix as a continuous function of these updating
parameters. Thus, the eigenvalue derivative with respect to the updating parameters may be
computed analytically, thus producing a more accurate sensitivity matrix. The major
di$culty in using a model updating approach is di!erentiating between damage and any
modelling errors that are present in the undamaged structure [22]. There are two
approaches to overcome this problem, although both require measurements from the
undamaged structure. The "rst is to update the model of the undamaged structure to obtain
a validated model. Care must be taken to ensure that the parameters of the updated model
have physical meaning, rather than merely improving the correlation of the measured and
predicted data. The second approach considers the changes in frequency between the
damaged and undamaged structures, so that to "rst order the modelling errors are
eliminated. Neither approach is able to satisfactorily cope with environmental e!ects, for
example changing temperatures or humidity.
The alternatives to the inverse approach, based on an FE model of the structure, are

pattern recognition and signal processing techniques (for example, references [23}26]).
These methods determine whether or not damage has occurred, based on feature vectors
which encode the important dynamic properties of the structure. Localization is usually
performed by determining which of a candidate set of sub-structures is damaged. The
methods still have problems when the dynamics change due to environmental e!ects, unless
these e!ects are explicitly incorporated into the feature vectors. Often pattern recognition
procedures require a signi"cant number of training data sets that are representative of
undamaged and damaged scenarios, and the only realistic source of these data is simulation.
The simpli"ed model presented in this paper may also be used to supply training data for
pattern recognition algorithms.
There are a number of approaches to the modelling of cracks in beam-type structures

reported in the literature. Dimarogonas [27] and Ostachowicz and Krawczuk [28] gave
comprehensive surveys of crack modelling approaches. The simplest method for an FE
model is to use a reduced sti!ness for a complete element to simulate a small crack in that
element [8, 11, 13, 29, 30]. Another simple approach is to divide the beam-type structure
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into two parts that are pinned at the crack location and the crack is simulated by the
addition of a rotational spring [12, 31}33]. These approaches are a gross simpli"cation of
the crack dynamics and do not involve the crack size and location directly. The alternative
is to model the dynamics close to the crack more accurately, for example producing
a closed-form solution giving the natural frequencies and mode shapes of cracked beam
directly [34] or using di!erential equations with compatible boundary conditions satisfying
the crack conditions [35}37]. Alternatively, two- or three-dimensional "nite element
meshes for beam-type structures with a crack may be used [38}40]. These methods produce
detailed and accurate FE models but are a complicated and computational intensive
approach for modelling simple structures like beams. Furthermore, the FE models will
contain modelling errors, the data will include measurement errors, and the use of
low-frequency vibration will tend to average out localized e!ects. The result is that these
very detailed models do not substantially improve the results from crack detection and
location algorithms. Lee and Chung [41] generated the #exibility matrix of a beam element
with a crack using an energy method. Most of the work was theoretical, although some
experimental validation has been performed either by using the ratios of the lower natural
frequencies or by direct comparison [33, 41].
The model described in this paper is for an open crack. A breathing crack, which

opens and closes, produces interesting and complicated non-linear dynamics. Brandon [42]
and Kisa and Brandon [43] gave an overview of some of the techniques that may be
applied. Many techniques to analyze the resulting non-linear dynamics are based on
approximating the bilinear sti!ness when the crack opens and closes. The approach
proposed in this paper is able to approximate the sti!ness matrix for the beam with an open
crack. Such an approach will certainly be more e$cient than those based on 2-D or 3-D FE
models for time integration of the equations of motion. However, any realistic
multi-degree-of-freedom non-linear analysis would have to be based on a reduced order
model of the structure.
This paper models beam structures with cracks at di!erent locations by using

Euler}Bernoulli beam elements with some modi"cation to the local #exibility in the vicinity
of the crack. The modelling approach is based on the concept of Christides and Barr [44]
and utilizes a simple approximation to the sti!ness reduction. Other authors have used
similar approaches [45}47]. The formulation is simpler than the method of Lee and Chung
[41], and has the advantage that it involves the crack location and depth directly. The
modelling of the crack will be discussed "rst, followed by the incorporation of the crack
model into the FE model of the structure and the estimation of the crack location and size
from the measured modal data. Experimental results are then used to validate the crack
model and also compare the results with those from other crack models. This comparison is
intended to show that the proposed crack model is able to give an accuracy similar to other
models, but is simpler to apply in health monitoring applications. Finally, the proposed
method is demonstrated using experimental examples.

2. THEORY

The problem considered here is a simple beam with multiple cracks along its length, and
is shown schematically in Figure 1. It is assumed that the cracks have a uniform depth
across the width of the beam, and that they do not change the beam mass. Only fully open
cracks are considered. First, the model of the crack will be introduced; this model is then
incorporated into the FE model and "nally, the estimation of the crack depth and location
will be discussed.



Figure 1. The beam with multiple cracks.
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2.1. CRACK MODELLING

Clearly, some of the materials adjacent to the crack will not be stressed and thus will o!er
only a limited contribution to the sti!ness. The actual form of this increased #exibility is
quite complicated, but in this paper this phenomenon is approximated by a variation in the
local #exibility (EI). In reality, for a crack on one side of a beam, the neutral axis will change
in the vicinity of the crack, but this will not be considered here. Christides and Barr [44]
considered the e!ect of a crack in a continuous beam and calculated the sti!ness, EI, for
a rectangular beam to involve an exponential function given by
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of areas of the undamaged beam and at the jth crack. w and d are the width and depth of
the undamaged beam, and d

��
is the crack depth. x is the position along the beam and x

�
the position of the crack. � is a constant that Christides and Barr estimated from
experiments to be 0)667. The inclusion of the sti!ness reduction of Christides and Barr
[44] in an FE model of a structure is complicated because the #exibility is not local to
one or two elements, and thus the integration required to produce the sti!ness matrix
for the beam would have to be performed numerically every time the crack position
changed. Furthermore, for complex structures, without uniform long beams, equation
(1) would only be approximate. The comparison of the proposed model with that of
Christides and Barr is intended to show the similarities of the current simpli"ed approach
with an established model.
Figure 2 shows the variation of EI for a crack 25% of the beam depth using equation (1).

What is clear is that most of the #exibility is local to the crack, although there are also very
small changes in #exibility far away from the crack. In this paper, a simpli"ed form of the
sti!ness variation is used, where the #exibility varies linearly from the uncracked to cracked
beam section, as shown in Figure 2. The variation in EI starts from an e!ective length, l

�
, on

either side of the crack location, and at the position of highest #exibility the sti!ness is the
second moment of area of the cracked section and is based on the crack depth. The
determination of the length l

�
will be considered later. Although this model will not be

accurate at high frequencies, for low-frequency vibration this model will produce a local
#exibility that gives a su$ciently accurate equivalent model of the beam with a crack. The
great advantage of this approach is simplicity. An alternative simple approach is to reduce
the sti!ness of a whole element. However, the number of elements must increase to
obtain good localization, and estimating the crack depth must be done a posteriori. Another
simple approach models the crack using a pinned connection and a rotary spring.
However, this spring must be introduced at a node and estimating the crack depth is



Figure 2. Comparison in the variation in sti!ness near a crack for the triangular reduction (solid) and the
approach of Christides and Barr [35] (dotted) for a crack depth of 25%.

Figure 3. The eth beam element with a triangular variation in sti!ness used to model the crack.
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di$cult. With the triangular reduction in sti!ness the crack depth and location are
estimated directly.
The #exural rigidity close to the crack, EI

�
(�), is given by
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where �
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is the location of the jth crack within the eth element and �
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are the positions on either sides of crack where the sti!ness reduction begins

(see Figure 3).
It remains to determine the e!ective length of the sti!ness reduction for the crack, l

�
. One

approach is to make the integral of the sti!ness reduction in equations (1) and (2) equal.
Since most of the #exibility is local in both cases, then for modes where the curvature is
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small near the sti!ness reduction, ensuring these integrals are equal would produce equal
natural frequency changes due to the crack. The integrals are

from equation (1), �
�
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where the approximations are of the "rst order in C. Thus, a good approximation seems
to be

l
�
"

d

�
"1)5d, (4)

where the value for � estimated by Christides and Barr [44] has been used. The quality of
this model will be checked later using the experimental data. Note that this length does not
change with the crack depth, but instead depends on the beam depth.

2.2. FINITE ELEMENT MODELLING OF A BEAM WITH A CRACK

The Euler}Bernoulli formulation was used to model the beam and only bending in
a single plane is considered. A consistent mass matrix is used. Each node has two degrees of
freedom, namely the translational displacement and bending rotation. The cracks are
assumed to be placed within the beam elements of the FE model. The derivation of the
reduced sti!ness due to a single crack will be outlined. Consider the jth crack at location x

�
within the eth element of beam, as shown in Figure 3. It will be assumed that the sti!ness
reduction all falls within a single element. If the sti!ness reduction extends over more than
one element, then the following approach may be easily extended to include integration
over all the elements a!ected. The alternative is to move the nodes of the model to ensure
that the crack e!ect is contained within a single element.
The sti!ness matrix of the eth element of the beam may be written as
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is the element sti!ness matrix for the eth element with no crack and K
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integration based on the variation in #exural rigidity as
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and l
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is the length of the eth element. Using equations (2), (6) and (7), the matrix K
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Similarly, the sti!ness matrix K

��
can be constructed for other cracks. These element

matrices are then assembled into the global sti!ness matrix for the beam structure.
Although free}free and cantilever beam structures are considered in the examples, these
elements may be incorporated into beam elements of any complex structure.

2.3. ESTIMATION OF CRACK DEPTH AND LOCATION

The crack locations and depths are estimated using model updating. The penalty function
method [17], based on natural frequencies only, is used. The vector of updating parameters
is �"[x d

�
]	, where x"[x
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, x

�
,2,x
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depths. The measurement vector consists of the "rst m eigenvalues (natural frequency
squared), z
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The eigenvalues may be written as a "rst order truncated Taylor series expansion in terms
of the updating parameters, giving the error vector, �, as,

�"�z!S��, (9)
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where �� is the vector of perturbations in the updating parameters and �z"z
�
!z

�
is the

eigenvalue error. It is important that the correct modes are paired, and this is conveniently
checked using the modal assurance criteria (MAC) [48]. The sensitivity matrix, S, is the "rst
derivative of eigenvalues with respect to the updating parameters. These derivatives are
readily computed [49] as
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where �
	
is the ith eigenvector. Since the e!ect of the cracks on the mass matrix is assumed

to be negligible, the mass derivatives will be zero. The sti!ness derivatives are computed by
di!erentiating the system sti!ness matrix. The position of the jth crack at the end of each
iteration is given by x

�
. Suppose that the jth crack is placed within the eth element of beam

(see Figure 1), then

x
�
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where x (e) is the position of the eth node and �
�
is the local co-ordinate of the jth crack in the

eth element. Since x (e) is "xed, �K/�x
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. Since the sti!ness matrix due to the jth

crack, K
��
, is a continuous function of both �

�
and, d

��
, the derivative may be computed

analytically. From the expressions for the sti!ness matrix, equation (8), it is clear that the
sti!ness matrix is a quadratic function of the crack position, �

�
, and a linear function of the

crack sti!ness, EI
��
, which in turn is a cubic function of the crack depth, d

��
.

The penalty function, J, is formed as [17]

J (��)"�	W�� , (12)

where W� is the positive diagonal weighting matrix which re#ects the con"dence level in the
frequencymeasurements. It is generally taken as the reciprocal of the variance (the square of
the standard deviation) of the corresponding measurements [17]. It is implicit in equation
(12) that the set of equations is over-determined, and so there are more measurements than
parameters. Often the estimation is ill-conditioned, and in this case regularization can help
[50, 51]. However, care must be exercised in identifying crack locations and depths where
there is insu$cient information in the measurements, and this may be conveniently checked
by using the singular-value decomposition.
The estimated crack locations and their depths are obtained by minimizing J with respect

to ��, which involves di!erentiating J with respect to each parameter, and setting the result
equal to zero. The perturbation in the parameter vector is then

��"[S	W�S]��S	W� �z. (13)

Since equation (9) is a linear approximation, the method is iterative. A new model with the
updated crack locations and their depths is generated, and the revised analytical
eigenvalues and sensitivity matrix produced. The iteration process continues until the
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solution converges. Since model updatingminimizes a non-linear function using an iterative
approach, a local rather than a global minimum may be found. This may be checked by
using a number of di!erent initial values for the unknown parameters.

3. VALIDATION OF THE CRACK MODEL

The expression for the e!ective length of the crack, l
�
, given by equation (4) and also the

triangular model for the sti!ness reduction need to be validated. This section reports the
experimental results from cantilever and free}free beams and compares these measurements
to predictions from the model. The experimental modal tests were conducted on the beams
with and without cracks, and the results compared to the corresponding predictions from
the FE model. The experimental damage was implemented using saw cuts, and these
correspond to open cracks.

3.1. CASE 1: AN ALUMINIUM CANTILEVER BEAM

The "rst example is an aluminium cantilever beam. Table 1 gives details of the geometric
and material properties. The modal parameters of the beam were obtained by the impulse
response method [52] using a small instrumented hammer for excitation and an
accelerometer of mass 3)5 g for the response measurements. The experimental frequency
response functions were processed through MATLAB-based modal analysis software to
obtain the modal parameters. The modal test was conducted on the beam without any
cracks and also with a single crack at 275mm with the crack depth varying from 4 to 12mm
in steps of 4mm. Table 2 gives the identi"ed experimental natural frequencies.
An FE model of the cantilever beam was constructed using Euler}Bernoulli beam

elements and including translational and rotational springs to simulate the boundary
conditions at the clamped end of the beam. The FE model is shown schematically in Figure
4, and has 16 elements and 34 degrees of freedom. The sti!ness of these boundary springs
were tuned using the modal data of the uncracked beam to produce a validated FE model
(see Table 2). The boundary sti!nesses, k

�
"26)5MN/m and k�"150kNm/rad, are

required to simulate the translation and rotation #exibility of the clamped support. Using
this FE model, the modal data of the cracked beam have been predicted, using the local
TABLE 1

¹he properties of the beams used for the experimental study

Case 1 Case 2 Case 3

Boundary conditions Cantilever Free}free Free}free
Material Aluminium Aluminium Steel
Young's modulus, E 69)79GN/m� 69)79GN/m� 203)91GN/m�
Mass density, � 2600 kg/m� 2600 kg/m� 7800 kg/m�
The Poisson Ratio, 	 0)33 0)33 0)33
Beam length, ¸ 996mm 1832mm 1330mm
Beam width, w 50mm 50mm 25)30mm
Beam depth, d 25mm 25mm 25)30mm
Boundary sti!nesses k

�
"26)5MN/m

k
�
"150 kNm/rad



TABLE 2

¹he natural frequencies (Hz) of the cantilever beam with one crack

No crack d
��

"4mm at x
�
"275mm d

��
"8mm at x

�
"275mm d

��
"12mm at x

�
"275mm

Mode Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

1 20)000 19)902 !0)490 20)000 19)641 !1)795 19)750 19)382 !1)863 19)000 19)164 #0)863
2 124)500 124)543 #0)035 124)250 124)106 !0)116 124)063 123)689 !0)301 123)000 123)343 #0)279
3 342)188 345)507 #0)970 340)813 340)758 !0)016 336)875 336)094 !0)232 326)563 332)383 #1)780
4 664)375 664)317 !0)009 662)813 663)020 #0)031 662)313 660)584 !0)261 660)313 658)641 !0)253
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Figure 4. The FE model for the cantilever beam example.
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#exibility (EI) of the beam element with a crack as proposed in section 2. Table 2 compares
the measured and predicted natural frequencies for the cracked beam. The natural
frequencies are estimated within an error of 1)9%.

3.2. CASE 2: AN ALUMINIUM FREE}FREE BEAM

The second example is a free}free aluminium beam whose physical dimensions and
material properties are given in Table 1. Once again, the modal parameters of the beam
were obtained using the impulse response method [52]. The modal tests were conducted on
the beam without any cracks and with multi-cracks at di!erent locations and crack depths.
The experimentally identi"ed natural frequencies are listed in Tables 3 and 4.
An FE model of the free}free beam was constructed using 27 Euler}Bernoulli beam

elements and 56 degrees of freedom. The computed natural frequencies were close to the
experimental results for the beam without any cracks. Tables 3 and 4 also show the
experimental and predicted natural frequencies for the cracked beam. Once again, it was
observed that the computed natural frequencies matched the experimental results closely
and within an error of 1)5%.

3.3. CASE 3: A STEEL FREE}FREE BEAM

The third example is another free}free beam, but this time made of steel. Table 1 gives
details of the physical dimensions and material properties for this beam. The free}free
modal test was conducted on the beam without any cracks and with one crack at 430mm,
with the crack depth varying from 4 to 12mm in steps of 4mm. The experimentally
identi"ed natural frequencies are listed in Table 5, together with the predicted natural
frequencies from an FE model with 20 elements and 42 degrees of freedom. Once again it
was observed that the computed natural frequencies closely match the experimental results
within 1)1%. The experimental and analytically computed natural frequencies of the
cracked beam are compared in Table 5.

4. COMPARISON WITH OTHER CRACK MODELS

As indicated earlier, two simple crack models for beam structures have been used in
earlier studies. The "rst approach is to assume the #exibility (EI) of the complete beam
element with the crack being reduced. The second approach estimates the sti!ness of the
beam element with the crack by generating the #exibility matrix using an energy method



TABLE 3

¹he natural frequencies (Hz) of the aluminium free}free beam with one crack

No crack d
��

"4mm at x
�
"595mm d

��
"8mm at x

�
"595mm d

��
"12mm at x

�
"595mm

Mode Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

1 40)000 39)789 !0)527 39)688 39)379 !0)778 39)375 39)094 !0)714 39)063 38)857 !0)527
2 109)688 109)680 !0)007 109)063 108)206 !0)786 108)125 107)132 !0)918 105)938 106)278 #0)321
3 215)000 215)018 #0)008 215)000 214)087 !0)425 214)688 213)825 !0)402 214)375 213)622 !0)351
4 355)000 355)440 #0)124 354)688 353)107 !0)446 353)438 351)872 !0)443 350)625 350)881 #0)073
5 528)750 530)977 #0)421 527)188 524)696 !0)473 522)812 520)452 !0)451 513)125 517)219 #0)798

TABLE 4

¹he natural frequencies (Hz) of the aluminium free}free beam with two cracks

d
��

"12mm at x
�
"595mm d

��
"12mm at x

�
"595mm d

��
"12mm at x

�
"595mm

No crack d
��

"4mm at x
�
"800mm d

��
"8mm at x

�
"800mm d

��
"12mm at x

�
"800mm

Mode Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

1 40)000 39)789 !0)527 38)750 38)352 !1)027 38)437 37)897 !1)405 37)500 37)513 #0)035
2 109)688 109)680 !0)007 105)938 105)890 !0)045 105)938 105)510 !0)404 105)625 105)559 !0)062
3 215)000 215)018 #0)008 213)750 212)207 !0)722 212)813 210)897 !0)900 210)000 209)815 !0)088
4 355)000 355)440 #0)124 350)000 348)920 !0)308 349)063 347)235 !0)524 345)625 345)876 #0)073
5 528)750 530)977 #0)421 512)500 514)575 #0)405 511)250 512)903 #0)323 507)500 510)560 #0)603
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TABLE 5

¹he natural frequencies (Hz) of the steel free}free beam with one crack

No crack d
��

"4mm at x
�
"430mm d

��
"8mm at x

�
"430mm d

��
"12mm at x

�
"430mm

Mode Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

Experi-
mental

Analyt-
ical

Error
(%)

1 75)313 75)171 !0)188 74)688 74)406 !0)377 74)063 73)628 !0)587 72)813 72)958 #0)199
2 207)188 207)212 #0)012 205)625 204)183 !0)701 202)500 201)283 !0)601 197)188 198)928 #0)882
3 406)250 406)225 !0)006 405)625 405)368 !0)063 404)688 404)557 !0)032 403)125 403)916 #0)196
4 667)813 671)536 #0)557 666)250 668)429 #0)327 662)813 665)356 #0)384 655)938 662)874 #1)057
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[41]. The natural frequencies for the experimental examples above were computed by these
two methods. The reduction in EI was estimated so that the computed natural frequencies
were close to the experimental ones. The natural frequencies computed by these methods
are listed in Tables 6}8, along with the frequencies predicted by the proposed method. The
natural frequencies predicted by all of the methods are close to the experimental values.
Although reducing EI is simple, it does not involve the size and location of the crack
directly. The approach of Lee and Chung does involve both the size and location of the
crack in the modelling, but the formulation is very complicated compared to the proposed
method. Thus, the proposed method of crack modelling will be used for crack identi"cation.

5. EXPERIMENTAL EXAMPLES OF CRACK IDENTIFICATION

To estimate the depth and location of a crack in a structure, the measured modal data
and an initial estimate of the updating parameters are required. The measured data
consisted of measured natural frequencies and mode shapes of the structure corresponding
to the crack depth and location to be determined. This set of data is henceforth referred to
as the target data for the iterative solution. The proposed crack model and estimation
method for the detection of the crack depth and location has been assessed by applying the
approach to the above experimental examples.
For all the three experimental examples, the detection of crack depth and location has

been carried out by using the crack location x
�
and the crack depth d

��
as updating

parameters. The "rst four measured natural frequencies were considered as the target data
for this exercise and the weighting matrix was taken as the inverse of the target (measured)
eigenvalues. Tables 9}11 give the results of the crack localization. Figure 5 shows the
convergence history of crack depth and location for the cantilever beam, and is typical of
the convergence for other examples. Of particular note is the fact that convergence is faster
when the initial parameter estimates are closer to the updated estimates. The results show
that the crack localization is very e!ective and the error in the estimated location and size is
small. The crack location estimation is more accurate (error (5%) compared to the crack
depth (error (30%). The higher error in the crack depth is partly due to the di$culties in
measuring the crack depth experimentally, and partly due to the simple crack model used.
However, the accuracy of the location is very encouraging, since this is usually quite di$cult
to estimate.
To test the performance of the approach when more than one crack is present, the depth

and location of two cracks were estimated using the measured data from the aluminium
free}free beam. The "rst "ve measured natural frequencies were used, since estimating four
parameters with four measurements will always be sensitive to measurement noise and
modelling error. Table 12 shows the result of the estimation. The errors are larger than for
the one crack case, but this is because the same data were used to estimate twice as many
parameters. Using "ve natural frequencies is insu$cient to allow averaging of the noise and
errors, and the results could be improved considerably by including more measured data
(either higher natural frequencies, or possibly mode shapes). Even so the location is
estimated with a typical accuracy of 5%, and is still under 10% in the worse case. Once
again the estimates of the crack depth are poorer than the estimates of location. This is
partly due to the reasons given for the one crack case, but also the opposite signs of the error
is indicative of ill-conditioning in the estimation that would be improved by using a more
measured data.
Of course the number of cracks present is not known initially. The normal approach is to

identify a single crack, then identify multiple cracks, and assess the "t to the measured data



TABLE 6

Comparison of the natural frequencies (Hz) of the cantilever beam with one crack estimated by di+erent models

No crack d
��

"4mm at x
�
"275mm d

��
"8mm at x

�
"275mm d

��
"12mm at x

�
"275mm

Mode Experi-
mental

Analyt-
ical

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduce
EI

Lee
et al. [41]

Proposed
method

1 20)000 19)902 20)000 19)753 19)822 19)641 19)750 19)543 19)580 19)382 19)000 19)251 19)048 19)164
2 124)500 124)543 124)250 124)289 124)410 124)106 124)063 123)934 124)008 123)689 123)000 123)446 123)147 123)343
3 342)188 345)508 340)813 342)571 343)920 340)758 336)875 338)591 339)263 336)094 326)563 333)366 329)937 332)383
4 664)375 664)317 662)813 662)782 663)539 663)020 662)313 660)732 661)299 660)584 660)313 658)087 656)975 658)641

TABLE 7

¹he natural frequencies (Hz) of the aluminium free}free beam with one crack estimated by di+erent models

No crack d
��

"4mm at x
�
"275mm d

��
"8mm at x

�
"275mm d

��
"12mm at x

�
"275mm

Mode Experi-
mental

Analyt-
ical

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduce
EI

Lee
et al. [41]

Proposed
method

1 40)000 39)789 39)688 39)594 39)698 39)379 39)375 39)371 39)415 39)094 39)063 39)021 38)77 38)857
2 109)688 109)680 109)063 108)899 109)311 108)206 108)125 108)036 108)200 107)132 105)938 106)735 105)850 106)278
3 215)000 215)018 215)000 214)815 214)927 214)087 214)688 214)592 214)654 213)825 214)375 214)258 214)085 213)622
4 355)000 355)440 354)688 354)549 355)028 353)107 353)438 353)559 353)783 351)872 350)625 352)059 351)136 350)881
5 528)750 530)977 527)188 527)603 529)363 524)696 522)812 524)011 524)684 520)452 513)125 518)843 515)507 517)219
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TABLE 8

¹he natural frequencies of the steel free}free beam with one crack estimated by di+erent models

No crack d
��

"4mm at x
�
"430mm d

��
"8mm at x

�
"430mm d

��
"12mm at x

�
"430mm

Mode Experi-
mental

Analyt-
ical

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

Experi-
mental

Reduced
EI

Lee
et al. [41]

Proposed
method

1 75)313 75)171 74)688 74)670 74)938 74)406 74)063 74)004 74)224 73)628 72)813 72)284 72)634 72)958
2 207)188 207)212 205)625 205)190 206)262 204)183 202)500 202)630 203)458 201)283 197)188 198)278 197)764 198)928
3 406)250 406)225 405)625 405)642 405)974 405)368 404)688 404)907 405)235 404)557 403)125 403)672 403)770 403)916
4 667)813 671)536 666)250 669)335 670)550 668)429 662)813 666)527 667)615 665)356 655)938 661)720 661)635 662)874
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TABLE 9

¹he crack depth and location estimation for the cantilever beam example (initial parameter estimates: x
�
"400mm, d

��
"2mm)

No crack Case 1a Case 1b Case 1c

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Crack location x
�
(mm) * 275)00 272)29 275)00 276)60 275)00 288)27

(!0)985) (#0)582) (#4)825)
Crack depth d

��
(mm) * 4)00 3)65 8)00 7)063 12)00 15)49

(!8)750) (!11)712) (#29)08)

Experiment Experiment Predicted Experiment Predicted Experiment Predicted

1 20)000 20)000 19)662 19)750 19)444 19)000 19)095
Natural 2 124)500 124)250 124)169 124)063 123)757 123)000 122)752
frequency (Hz) 3 342)188 340)813 341)233 336)875 337)113 326)563 330)548

4 664)375 662)813 663)048 662)313 661)318 660)313 660)861

Number of iterations required 05 07 15
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TABLE 10

¹he crack depth and location estimation for the aluminium free}free beam example (initial parameter estimates: x
�
"832mm, d

��
"2mm)

No crack Case 2a Case 2b Case 2c

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Crack location x
�
(mm) * 595)00 581)30 595)00 600)33 595)00 594)56

(!2)302) (#0)896) (!0)074)
Crack depth d

��
(mm) * 4)00 3)07 8)00 7)082 12)00 11)687

(!23)250) (!12)475) (!2)608)

Experiment Experiment Predicted Experiment Predicted Experiment Predicted

1 40)000 39)688 39)499 39)375 39)341 39)063 38)874
Natural 2 109)688 109)063 108)650 108)125 108)074 105)938 106)330
frequency (Hz) 3 215)000 215)000 214)175 214)688 214)076 214)375 213)625

4 355)000 354)688 353)673 353)438 352)894 350)625 350)973

Number of iterations required 12 08 11
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TABLE 11

¹he crack depth and location estimation for the steel free}free beam example (initial parameter estimates: x
�
"630mm, d

��
"2mm)

No crack Case 3a Case 3b Case 3c

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Crack location x
�
(mm) * 430)00 438)10 430)00 443)02 430)00 436)60

(#1)884) (#3)028) (#1)535)
Crack depth d

��
(mm) * 4)00 3)664 8)00 7)70 12)00 15)000

(!8)40) (!3)75) (#25)00)

Experiment Experiment Predicted Experiment Predicted Experiment Predicted

1 75)313 74)688 74)456 74)063 73)650 72)813 72)545
Natural 2 207)188 205)625 204)552 202)500 201)955 197)188 197)997
frequency (Hz) 3 406)250 405)625 405)694 404)688 405)366 403)125 404)238

4 667)813 666)250 668)006 662)813 663)693 655)938 659)771

Number of iterations required 15 12 07
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Figure 5. The convergence of the estimated crack depth and location for the cantilever beam: (a) Depth
estimation; (b) Location estimation: **, target; �, case 1a; �, Case 1b; and �, Case 1c.

32 J. K. SINHA E¹ A¸.
for signi"cant improvement. Suppose that only one crack is present, but an attempt is made
to identify the location and depth of two cracks. Table 13 shows the results of this exercise
for the aluminium free}free beam example. A lower limit of 0)1mm has been placed on the
crack depth to eliminate possible numerical problems near zero crack depth. It is clear that
in all cases one of the two identi"ed cracks has a negligible e!ect (approximately zero
depth), and the position of the other crack is identi"ed accurately. Again, the location is
estimated more accurately than the crack depth.
The model updating process is iterative because the cost function that is minimized (the

error in the eigenvalues) is a highly non-linear function of the parameters. To illustrate this
non-linearity, Figure 6 shows surface plots of the percentage frequency error (root mean
square of percentage frequencies errors) versus crack location and depth for experimental
cases 1b and 2c. It may be seen that there is one predominant minimum for case 1b and two
minima symmetrically placed along the length of the beam for case 2c. The two local
minima for case 2c indicate the symmetrical con"guration of the free}free beam and the
estimation process may converge to either of the minima. This limitation should be
acceptable for a symmetric structure, and if necessary the mode shapes may be used to
distinguish between the minima. However for an unsymmetrical structure (case 1b), there is



TABLE 12

¹he estimation of the depth and location of two cracks for the aluminium free}free beam example (initial parameter estimates: x
�
"400mm,

d
��

"1mm, x
�
"1000mm, d

��
"1mm)

No crack Case 4a Case 4b Case 4c

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Crack location x
�
(mm) * 595)00 595)72 595)00 614)48 595)00 627)46

(#0)121) (#3)274) (#5)455)
x
�
(mm) * 800)00 824)91 800)00 878)73 800)00 849)60

(#3)114) (#9)841) (#6)20)

Crack depth d
��

(mm) * 12)00 13)24 12)00 15)13 12)00 17)50
(#10)333) (#26)083) (#45)833)

d
��

(mm) * 4)00 2)77 8)00 4)51 12)00 8)82
(!30)75) (!41)625) (!26)50)

Experiment Experiment Predicted Experiment Predicted Experiment Predicted

1 40)000 38)750 38)491 38)437 38)163 37)500 37)544
Natural 2 109)688 105)938 105)93 105)938 105)93 105)625 105)80
frequency (Hz) 3 215)000 213)750 212)54 212)813 211)66 210)000 210)11

4 355)000 350)000 349)57 349)063 348)67 345)625 346)44
5 528)750 512)500 515)34 511)250 512)09 507)500 508)26

Number of iterations required 15 11 12
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TABLE 13

¹he estimation of the depth and location of two cracks for the aluminium free}free beam example, when only one crack is present (initial
parameter estimates: x

�
"400mm, d

��
"1mm, x

�
"1000mm, d

��
"1mm)

No crack Case 2a Case 2b Case 2c

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Actual
(target)

Estimated
(% error)

Crack location x
�
(mm) * 595)00 562)45 595)00 578)68 595)00 583)90

(!5)47%) (!2)74%) (!1)87%)
x
�
(mm) * * 332)00 * 332)00 * 332)00

Crack depth d
��

(mm) * 4)00 2)48 8)00 5)50 12)00 13)00
(!38)00%) (!31)25%) (#8)33%)

d
��

(mm) * * 0)10 * 0)10 * 0)10

1 40)000 39)688 39)51 39)375 39)28 39)063 38)82
Natural 2 109)688 109)063 108)59 108)125 107)67 105)938 105)90
frequency (Hz) 3 215)000 215)000 213)92 214)688 213)68 214)375 213)18

4 355)000 354)688 353)96 353)438 353)03 350)625 351)28
5 528)750 527)188 526)44 522)812 522)54 513)125 515)69

Number of iterations required 8 18 22

34
J.K

.S
IN

H
A
E

¹
A

¸
.



Figure 6. The percentage natural frequency error as a function of crack depth and location.

LOCATION OF CRACKS IN BEAMS 35
only one global minimum and this indicates the uniqueness of the identi"ed parameters. It
is also clear that local minima exist, and multiple initial parameter values should be taken to
ensure that the global minimum is obtained.

6. CONCLUDING REMARKS

A non-intrusive and non-destructive method for the estimation of both the location and
the depth of cracks in beam-type structures, by the solution of an inverse vibration problem,
has been presented. The methodology uses a baseline FE model along with the modal test
data in a gradient-based model updating method. The changes in the natural frequencies of
the structure due to the presence of a crack are used. Methods of modelling of beam-type
structures with multi-cracks, as well as their identi"cation (both crack size and location),
have been discussed. The validation of the proposed method has been demonstrated with
three simple experimental examples. It has also been observed from experimental examples
that the estimation of the crack location is more accurate than the estimation of the crack
depth. In considering the application of the proposed technique to real problems, the
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accurate location of a crack is more important for predictive and preventive maintenance
than its exact size. Beammodels have been used in the development of the method, although
a similar approach for two- and three-dimensional components is possible.
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